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Motivation

* The 1994 fission yield evaluation by England and Rider does not
include information on covariances between fission yields. [1]

* Covariances between fission yields affect a number of important
applications:
* Forensics and safeguards calculations
* Reactor antineutrino rates
* Reactor inventory, decay heat, and poisoning

[1] — Evaluation and Compilation of Fission Product Yields — T.R. England and B.F. Rider (1994)



Previous Work

* Pigni et al. — 2013
e Variance estimation with Wahl systematics

e Schmidt — 2013

e Parameters perturbation in the GEF code

* Leray et al. — 2017
e Parameters perturbation in the GEF code

e Kawano and Chadwick — 2013

e Bayesian method for 23°Pu FPY
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Work by Pigni, Schmidt, and
Kawano presented in WPEC
Subgroup 37

Work by Pigni, Schmidt, and
Leray relies on an underlying
model of fission and
parameter uncertainties.
Results of these work are not
readily accessible due in part
to ENDF format limitations.




Motivation

* The goal of this work is to generate a set of covariance matrices for
the fissioning systems of the England and Rider evaluation with as
little fission model bias/uncertainty as possible.

* This method seeks to use simple conservation rules in order to
constrain a sample space for Monte-Carlo bootstrapping.

* The resulting covariance matrix will predominantly reflect the
evaluated uncertainties in the independent fission yields.

* Once these matrices are generated, making them available online will
be a priority.



Bootstrapping

* Bootstrapping is a Monte-Carlo method for uncertainty estimation
and propagation.

* Given a dataset with characterized uncertainty; one builds a new
series of datasets by resampling the original one.

* This can be used to assess uncertainties and covariance in an output
calculation by varying the input data.

* It could also be used to assess covariances between the values in the original
dataset.

Field specific resource: “An introduction to bootstrap for nuclear physics” — A. Pastore (2019)



Bootstrapping

* Covariances between fission yields can be generated by statistically
resampling fission yields about their evaluated uncertainties:
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Bootstrapping

* Covariances between fission yields can be generated by statistically
resampling fission yields about their evaluated uncertainties:

I
B Histogram of Samples

—— Evaluated Yield

400 ly  — Evaluated Uncertainty

However, resampling fission yields like this
— independently of each other —
will yield no correlation/covariance.
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Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield:

XE
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[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015_May/SG37 8 LF.pdf
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Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield: Total Charge: Total Mass: Mass Yields:
DYi=2 Y ZYi=Zoy Y ANi=Aw—T ) Yi(4) = ¥u(d)
i i i i
(Charge Pority: Mass Symmetry:
This relationship is only approximately conserved.
It is debatable whether it is a valid condition. 2 Vi(4) =1
Nevertheless, it is exploited in order to help A >ACN
conserve the other 5 relationships.

[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015_May/SG37 8 LF.pdf




FY Covariance Matrix Generation

* The way in which a set of fission
vields are resampled can be
structured to conserve these
relationships:

* 1) Randomly selected the “light” or
“heavy” side of the fission product
spectrum to resample.

* 2) Randomly select (weighted by
uncertainty) a product in each A
chain, resample its yield about its
evaluated uncertainty.

* 3) Scale all other yields in that A
chain by the same percent change.
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FY Covariance Matrix Generation

* The way in which a set of fission 10
yields are resampled can be — Evaluation
—— Resample

structured to conserve these e
relationships: 0.08,

* 1) Randomly selected the “light” or
“heavy” side of the fission product
spectrum to resample.

* 2) Randomly select (weighted by
uncertainty) a product in each A
chain, resample its yield about its 0.02
evaluated uncertainty.
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* 3) Scale all other yields in that A4 000 =5 10 1o Do B0 w0 B30 160
chain by the same percent change. Mass Number

Step 3 is allowed if the Z distribution for a given A is Gaussian,
e e o Arter (100) which empirical data and the E&R evaluation supports [1].




FY Covariance Matrix Generation

* 4) Normalize the resampled yields 0.10
such that they sum to 1.

* 5) Generate the fission yields on the
complementary side of the fission
product spectrum using the neutron
multiplicity of the compound system.
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By Step 5 we’ve ensured all of the
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FY Covariance Matrix Generation
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FY Covariance Matrix Generation
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Neutron Multiplicity for fast neutron induced fission of
235U according to J.P. Lestone in LA-UR-05-0288.



FY Covariance Matrix Generation

= P(y)
0.35- — v

* The England and Rider evaluation
does not make any mention of 0.301 | ‘

the neutron multiplicity
distribution used for their However, we know P(v) has
dependence on A and Z and

evaluations.
energy, etc.
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neutron multiplicity distribution
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England and Rider evaluation. ool |
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Neutron Multiplicity for fast neutron induced fission of
238 according to J.P. Lestone in LA-UR-05-0288.



E&R Consistent P(v, A) Data

* P(v,A) can be fitted to the England and Rider evaluation in order to
obtain the best degree of consistency.

* A truncated Gaussian is used to fit the shape of the P(v) distribution
for each A chain.

* Select P(v, A) that minimizes y? between evaluated yields and
“recalculated yields”, Y'(Z, A)

Y'(Z,A) = Z P(v,A)Y(Zey —Z, Aeyy — A — )
V



E&R Consistent P(v, A) Data

A=135,0v=1.71, x2 = 1.13E+00
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E&R Consistent P(v, A) Data

Example:
V(A) obtained from fitted
P(v, A) for fast fission of 23>U.
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E&R Consistent P(v, A) Data

Example:
V(A) obtained from fitted
P(v, A) for fast fission of 23>U.

| °
.. ) l ®
The expected dip in V(4) is : -
indeed seen near 4 = 132. I
|
* |
I
|
~ 31 .. o :Q I ® ’:Q
@ % ¢
0‘60 o® .. ° .’: ‘. .0 o0
) ® °® oo, o
21 00 ° o o0 : : ° o
® oo 0% e ’
1 ® T
™
Y
8IO 1(I)O 1éO 1210 160

Mass Number (A)



 Example: 13°Te

* Presented is the
covariance between
independent yields as
function of Z and A and
that of 13°Te.

* The evaluated yield for
135Te is 2.47 + 0.57%
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* Features:

o 135Te is positively
correlated with itself.
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* Features:

o 135Te is positively
correlated with itself.

* Products along the A
chain have positive
correlation.

* This positive correlation
is reflected along a
complementary A = 99
chain.

* Products along A chains
that do not have
complementary Z have
negative correlation.
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Issues and Challenges

« This choice of an A-independent  >°°|

P(v) leads to bimodality in the
distribution of resampled yields  4q0.
in this process.
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Issues and Challenges

* The use of P(v, A) data that
was fitted to the England and
Rider evaluation eliminates the
bimodality in this example.

* The average of this distribution
very closely matches the
evaluated yield.
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Issues and Challenges

* The use of P(v, A) data that
was fitted to the England and
Rider evaluation eliminates the
bimodality in this example.

* The average of this distribution
very closely matches the
evaluated yield.

* Inconsistency of P(v) / P(v, A)
with the E&R evaluation is a
known issue.

e Jaffke (2017) previously noted
this issue [1].
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[1] — “Identifying Inconsistencies in Fission Product Yield Evaluations with Prompt Neutron Emission” — P. Jaffke (2017)



Issues and Challenges

e Partial correlations between A chains on same side of the fission
product distribution are uncharacterized.

* This is because yields along each A chain are sampled independently
of each other.

* Methods to introduce correlations between A chains on the same
side of the distribution while introducing minimal fission model
dependence will be investigated.



Conclusions

* A model-agnostic method for independent fission yield covariance
matrix generation is being developed.

* This method has been successfully applied to all 61 compound
systems in the England and Rider evaluation.

* Initial results demonstrate expected behavior and trends.

* Final results will serve as an interim solution for independent fission
vield covariance matrices until a new evaluation is completed.

* Results will be made publicly available through publication appendices and
will be accessible at nucleardata.berkeley.edu.




Future Work

* Perform validation checks and compare covariance matrices to those
obtained by complementary generation methods.

* Obtain P(v, 4) distributions from FREYA and compare results to fitted
P(v,A) data.
* Ramona Vogt and Jgergen Randup are working to provide this data.
* This would introduce model dependence.

* Incorporate uncertainties on isomer-to-ground-state ratios from
Madland and England (1977) [1].

* While these ratios were used in the England and Rider evaluation the
uncertainties from this publication were not explicitly mentioned.

[1] — “The Influence of Isomeric States on Independent Fission Product Yields” — Madland and England (1977)



Thank You!

Eric F. Matthews



